Enabling Flexible Administration in ABAC
Through Policy Review:
A Policy Machine Case Study

Sherifdeen Lawal, Ram Krishnan
Univ. of Texas at San Antonio, Texas, United State
sherifdeen.lawal @utsa.edu, ram.krishnan @utsa.edu

Abstract—The Next Generation Access Control (NGAC),
founded on the Policy Machine (PM), is a robust Attribute-Based
Access Control (ABAC) framework that enables a structured
and flexible approach for the establishment of the conventional
access control models. The authorization state of the policy
machine is represented as an annotated Directed Acyclic Graph
(DAG). Structurally, relations among attributes of the same
type are hierarchical, and creating new relation(s) to specify
an authorization may be achieved through different approaches.
However, one or more limitations can make most of the obvious
approaches to grant new access inconsistent with existing rules.
We proposed an algorithm that provides the PM administrator a
comprehensive list of all possible approaches to authorize access.
The approaches generated by our algorithm can help the PM
administrator makes an informed decision before authorizing
access.

Index Terms—Attribute Based Access Control, Policy Review,
Authorization, Policy Machine, Authorization Graph

I. INTRODUCTION

Attribute-Based Access Control (ABAC) remains to be a
promising form of access control. Unlike traditional access
control. ABAC authorization to perform a set of operations is
determined by evaluating attributes associated with the subject,
object, and in some cases, environmental conditions against
policy, rules, or relationships that describe the allowable
operations for a given set of attributes [13].

The NIST Next Generation Access Control (NGAC) is one
of the two current implementations of ABAC. The Policy
Machine (PM) is the basis for the NGAC and can manage poli-
cies easily. There is a considerable amount of research work
in the literature, applying the Policy Machine (PM). Bhatt
et al. [4], [11], utilizes the Policy Machine for an attribute-
based extension of OpenStack access control and implements
(tHGABAC), a restricted version of the Hierarchical Group
Attribute-Based Access Control [16]. For achieving adaptive
policies, efficient and easy policy management in IoT [8] and
Mobile Health applications [12], NGAC specification has been
utilized to authorize communication between devices.

Another application of NGAC specification is the centrally
managed attribute-based access control policies for resource
repositories distributed across an enterprise and locally en-
forced using a host Access Control List in [6]. An implemen-
tation of NGAC as Next-generation Database Access control

[10], NDAC, provides a means of expressing policies over
(Structured Query Language) SQL queries for accessing data
in tables, rows, and columns in existing (Relational Data
Stream Management System) RDMS products.

Currently, the NGAC reference model only supports users’
capabilities and access entries audits. These existing policy
review features of the PM were improved upon by reducing the
overall time complexity from cubic to linear run time [3]. Also,
a faster theoretical approach for both per-user and per-object
policy review was proposed [2]. Beyond the application and
the improvement of existing features of the policy machine,
we addressed one of the vital administrative review queries
that the PM cannot currently answer in this work.

Rather than the traditional rule-based ABAC policy spec-
ification approach, the policy machine has a unique and
simplified approach that implies policy specification through
the RBAC-style relations. Thus, policy review is in polynomial
time [17]. In ABAC models like [15], [16], policies are in
propositional logic. Consequently, police review is an NP-
complete or even undecidable problem. Since PM specifies
access through relations enumerated between attributes, rela-
tions among attributes of the same type are hierarchical. One
benefit of the successive ranks among attributes is granting
access in multiple approaches. This characteristic can enhances
access control flexibility and facilitates attribute management
and administration. However, there is no established process to
provide all the multiple ways of granting access in the policy
machine implementation.

In summary, the contribution of this work is:

o The development of an algorithm that generates all the
possible relations that can grant access for a denied
administrative access request. In scenarios where creat-
ing an easy to see relations may be unacceptable, our
algorithm can provide the PM administrator with subtle
approaches.

The reminder of this paper is structured as follows. In
Section II, we touch on related work on this subject. Sec-
tion III provides overview of the policy machine framework
and its components. Section IV presents the scope, problem
statement and observation. Section V describe the approaches
to grant administrative access and presents its algorithm. An

<
Jape Alice Cathy Bob oS0
— ENERES =
assignment i LT = o
rassocaton| Reg fa Dt ¢A T*/Iiz ‘Ay #
assocaton] F16ad Cystodiar”PGYIO" P ire Trans
t ero

Paul

Kelly \ ~
roup
Head

C) .
[e
g8 [/
) f
e
T Z
VI
F
i
Mo\
g
B .9
3
= Y
& 3

Fig. 1: Policy Machine Authorization Graph

implementation of our algorithm is in Section VI, and Section
VII conclusions this work.

II. RELATED WORK

In NIST RBAC [5], the administrative review features define
requirements in terms of an administrative interface and an
associated set of semantics that provide the capability to
perform policy query on RBAC elements and relations. Some
of the queries answered by the administrative review functions
return the set of users assigned to a given role, roles assigned
to a given user, operations a given user may perform on a given
object, all permissions either directly granted to or inherited
by a given role, and roles directly assigned to a given user
as well as those “roles that were inherited by the directly
assigned roles.” Fernandez et al. [9] provides axiomatic and
operational semantics for ABAC policies and evaluates review
queries such as permissions associated with a given principal,
set of principals authorized to perform a given operation on a
resource, and categories principals and resources belong. The
NIST Policy Machine specification captures the policy review
questions answered in C-ABAC [9], and the only difference
is terminology.

Efforts related to policy review in the Policy Machine
attempt to improve the efficiency of answering two types
of user queries. One, can a particular user operate on an
object? Two, what privileges does a user have? Mell et al. [3]
contribution improves on the time complexity of performing
the mentioned queries from cubic to linear time, utilizing
the breadth-first search (BFS) and depth-first search (DFS)
variants.

In contrast, we proposed an algorithm for the policy review
question that neither the policy machine specification nor other
contributions answered. Our objective is not to improve on an
existing policy review question that the policy machine can
answer, our algorithm extends the policy review capabilities of
the PM. As the policy machine is different from the traditional
rule-based ABAC policy specification approach, a query for
all possible approaches to grant access is equally important as
those previously explored queries.

III. PoLICY MACHINE OVERVIEW

The rest of this section provides an overview of policy
machine core data elements and selected relations pertinent

to this work. The assignment, association, prohibition, and
obligation are the primary relations. Privileges and restrictions
are derived relations from associations and prohibitions in the
PM respectively. In this work, we only focus on the assignment
and association relations and concepts related to them.

A. PM Basic Elements And Relations

The authorization (access control) state of the policy ma-
chine is an annotated Directed Acyclic Graph (DAG). Basic
elements of the PM called Policy Elements (PE) are the
nodes in the access control graph. These nodes are the finite
sets of Users (U), Objects (O), User Attributes (UA), Object
Attributes (OA), and Policy Classes (PC). As shown in the
access control graph of figure 1, the users are the left top
nodes. Unlabeled directed acyclic edges called assignments are
relations allowed from user nodes to user attribute nodes, user
attribute to user attribute nodes, and user attribute to policy
class node. In a similar fashion on the right side of the graph,
connected unlabeled directed acyclic edges start from object
nodes, through objects attribute nodes, and terminates at the
policy class node.

All the nodes except for the policy class must have a path to
the policy class. Users’ access to protected resources is only
possible through the creation of an association. An association
is a relation represented by labeled (annotated) downward-
arcing edge from a user attribute node to an attribute (user
attribute or object attribute node). For instance, in figure 1, the
association triple (Group Head, aars;, Retail & Foreign Serv)
specify that a user who has a path to Group Head is authorized
to perform operations enabled by aars; on Retail & Foreign
Serv and policy element that has a path to Retail & Foreign
Serv. Access granted through an association could be a set of
resource access rights (i.e., r-association in the legend) or a set
of administrative access rights (i.e., a-association in the legend)
shown in solid blue and dashed red edges respectively. The
policy elements and the relations constitute the authorization
graph.

IV. SCOPE, PROBLEM STATEMENT, AND OBSERVATION

In the context of policy review, previous contributions were
to improve on an existing algorithm in the policy machine [2],
[3]. However, as we have mentioned before, there are other
policy review problems that are not addressed in the policy
machine framework. In the following subsection we specify
the aspects of the PM framework covered in this work and we
present an example to illustrate the problem we have proposed
an algorithm to solve.

A. Scope

The PM framework has multiple facets — the policy elements
and the assignments that make up a policy element diagram,
the association and prohibition that apply the policy element
diagram to form the authorization graph, and obligation that
are carried out when access related event occur [1]. Prohibition
and obligation are outside the scope of this paper, we focus
only on administrative access rights granted through assign-
ment and association.

B. Problem Statement

Users are granted access to protected resources in policy
machine by creating assignments (unlabeled edges) and/or as-
sociation (labeled edges) between conforming policy elements
(nodes). Based on the hierarchical nature of the policy machine
authorization graph, access for a specific request is granted in
multiple ways. In other words, multiple paths can be created
from a user or user attribute to a user attribute granted access
rights over some policy elements. However, for various rea-
sons, it may happen that not all the obvious ways of granting
an access are in accordance with specified policy. With the
algorithm we proposed in this paper, an exhaustive list of all
possible approaches to authorize a request is generated. The
output of our algorithm can help an administrator to decide
an approach to authorize an access.

The example that follows demonstrates how the number of
approaches to grant access can explode and how any constraint
can limit the number of ways an access may be granted.

Example 1. The authorization graph of figure 1 represents
the access policy of a financial institution with the policy
class BankOp Access. In the financial institution, a sensitive
task ‘trans-T° must be completed by a single user who is a
member of both user attributes, ATM Custodian and Trans
Serv Supervision (i.e., Cathy). The task ‘trans-T’ is modeled
as a sequence of administrative operation granted on Object
attributes, ATM & POS Serv and Wire Trans Serv through
the sets of administrative access rights aars, and aars,
respectively. Alice and Bob are employees of the financial
institution. Alice is a member of ATM Custodian and not
Trans Serv Supervision, while Bob is a member of Trans Serv
Supervision and not ATM Custodian.

For another task ‘“T-1" in this same institution, it is required
that a user who is a member of both ATM Custodian and Trans
Serv Supervision assigns a member of the Backup Officer to
ATM Custodian in order to complete the task ‘T-1°. In the
current state of the authorization graph of figure 1, Cathy
does not have the access right to assign Backup Officer to
ATM Custodian. Assuming Jane and Paul (members of the
institution that has a path to the user attribute Group Head) can
grant Cathy the access right to create the required assignment
(unlabeled edge), using the administrative access rights in
aars;. The following are approaches to grant Cathy the access
right to assign Backup Officer to ATM Custodian:

1) Create association between user attribute: Jane or Paul
can create associations from user attributes that are de-
scendant nodes to Cathy to Backup Officer, and its user
attributes descendants. That is, the predecessor and suc-
cessor nodes of an association that grants Cathy’s request
are the sets ATM Custodian, Trans Serv Supervision, Op
Officers, and Backup Officer, Op Officers respectfully.
Assuming aarsy is an administrative access right set that
enables Cathy’s request. Using association only, any of
the triples in the set, { (ATM Custodian, aarsy, Backup
Officer), (ATM Custodian, aarsy, Op Officers), (Trans
Serv Supervision, aarsy, Backup Officer), (Trans Serv

Supervision, aarsy, Op Officers), (Op Officers, aars,
Backup Officer), (Op Officers, aarsy, (Op Officers) }
authorizes Cathy’s request.

2) Create assignment from a user attribute to user attribute:
An existing association (Group Head, aars;, Op Officers)
grants Op Officers and its ancestor nodes the authority
to perform operations enabled by aars; (that includes
Cathy’s request) on Op Officers and its ancestor nodes.
Jane or Paul can create an assignment from DAG con-
forming user attributes that are descendants of Cathy to
Group Head and its user attribute ancestor nodes. The
cartesian product of the sets {ATM Custodian, Trans Serv
Supervision}, and {Group Head, Regional Head} are the
user attribute to user attribute relations that authorize
Cathy’s request.

3) Create assignment from a user to user attribute: Again,
Jane or Paul can create assignments (unlabeled edges)
from user node (Cathy) to user attribute node (Group
Head or Regional Head) that makes (Group Head or
Regional Head) reachable from Cathy. There are only two
ways to authorize Cathy’s request using this approach.

In total, there are twelve different ways of creating an
assignment or association to allow Cathy complete task “T-
1’. However, only two out of the twelve possible relations
does not violate the constraint on the task ‘trans-T’. If Jane
or Paul should authorize Cathy’s request using the approaches
enumerated in (1) and (2), then Alice and Bob can collude to
carry out task ‘trans-T’.

Even more, this is a simple example compare to the size of
an enterprise where this kind of issue get more complicated.
Also, the structure of an authorization graph may permit
granting an access using any non-redundant combination of
the three approaches. For instance, in the previous example,
Jane or Paul may grant Cathy’s request to complete task “T-1’
by first creating an (unlabeled edge) assignment from Cathy
to Backup Officer and then create another (unlabeled edge)
assignment from Backup Officer to Group Head or Regional
Head.

C. Observation

The Principal Authority (PA), also known as the superuser,
is a compulsory predefined entity of the PM. The PA is
responsible for creating and controlling the policies of the PM
in their entirety and inherently holds universal authorization
to carry out those activities within the PM framework.

The access rights held by the principal administrator can be
delegated to a domain or subordinate administrators except
the access right to create and delete policy class and the
access right to create and delete assignment of attributes to
the policy class. For instance, the Principle Administrator
(PA) that instantiated the authorization graph of figure 1 is
not visible in the graph. He created the policy elements and
relations as shown in the figure. Access rights granted to users
with a path to Group Head are sufficient to create all other
policy elements and relations.

Fig. 2: A Generic Authorization Graph for Scenario-I

V. PoOLICY REVIEW AND AUTHORIZATION

To authorize access in the PM, there are two possible
scenarios. In this section, we discuss these scenarios, the policy
review of policy elements involved in granting access, and
how we apply these scenarios and these policy elements in
our algorithm.

A. Access Request Scenarios

Authorization approaches depends on the relationship be-
tween a user requesting access and the protected resource in
an authorization graph. We interchangeably refer to the user
seeking access as the source user and the protected resource as
the farget policy element. There are two types of relationships
between the source user and the target policy element, viz:

1) There is a path between the source user and the target
policy element. This can only happen if the farget policy
element is a user or a user attribute.

2) There is no path between the source user and the rarget
policy element. In this scenario, the target policy element
is of a user, user attribute, an object, or an object attribute
type.

Our algorithm only considers granting access by a non-
principle administrator through the creation of edges (rela-
tions) between existing nodes (policy elements).

B. Access Enablers

To authorize access, a user create one or more edges
(relations) between policy elements through associations. We
refer to this user as the privileged user, the policy elements as
the access enabling policy elements, and the associations as the
access enabling associations. The path relationship between
other policy elements and the source user, privileged user,
access enabling associations, or target policy element defines
the access enabling policy elements.

Scenario-I requires at least one access enabling association
to authorize a source user’s access. An association that has
its predecessor-node reachable from a privileged user, its
successor-node reachable from the source user and its label has
the access right the source user is requesting. In other words,
there is a user that can perform the administrative operation
another user is requesting and his capable of granting this
access.

On the other hand, scenario-II requires at the minimum two
access enabling associations. There is an association through
which the privileged user can perform the requested access.
And a second association exists through which the privileged
user can assign the source user to the former.

In both scenarios, we adapt following notations for specify-
ing elements, functions, and sets in the access enabling policy
elements

e tail : ASSOCIATION — UA: is a function that
maps an edge, association relation, (ua;, ars;, aty) €
ASSOCIATION to the (user attribute) node ua; € UA
it originates.

e head : ASSOCIATION — AT: is a function that
maps an edge, association relation, (ua;, ars;, aty) €
ASSOCIATION to the (user/object attribute) node aty

€ AT it terminates. Where AT = UA U OA

e anc: PE —» 2FE: is the mapping from a policy element
to the set of policy elements that is an ancestor to the
policy element.

o des: PE — 2FF: is the mapping from a policy element
to the set of policy elements that is a descendant to the
policy element.

e PE;. . = {node | (dpe; € PE;)[node € func(pe;)l}:
is the set of all policy elements returned by func for the
set PE;, where func is anc or des.

1) Scenario-I Access Enabling Policy Elements: Figure 2
illustrates a generic authorization graph for this scenario. As-
suming the source user (us) is requesting an access right that
is a subset of ars;, the label of access enabling association
(uap, ars;, ua,) on target (ua;), the following are the
access enabling policy elements sets.
i) UA; = {ua | ua = tail((uap, ars;, uay)) V
ua € anc(tail((ua,, ars;, uay))}

ii) UAy = {ua | ua € anc(head((ua,, ars;, uay)))
A ua € des(ug)}

iii) UAs = {ualua € anc(head((ua,, ars;, uay))),
uva ¢ UAs, _,ua ¢ UAs,ua ¢ UAi,_ ,ua ¢ UAi}

iv) UA4 = {ua |l ua € des(ug) A des(uay) }

2) Scenario-1I Access Enabling Policy Elements: An object
attribute oa,, is the target policy element of figure 3. Let the
association granting the privileged user u, the access right to
perform the source user’s request be access enabling asso-
ciation’ (ua;, arsg, oa,) and the association the privileged
user can use to create a path from the source user us to the
predecessor-node of access enabling association’ be access
enabling association” (ua;, arsj, uag). The definition for
the user attribute access enabling policy elements sets UA;,

Fig. 3: A Generic Authorization Graph for Scenario-II

Number of requests = 1 Number of requests = 5

—a —a
1400 — a2 poo — @
@ Q3
1200 00
00
1000
00
800
faoo
600
00
00 00
200 hoo
0

o
0000 0002 0004 0006 0008 0010 0012 0014 0.005 0010 0015 0020 0025
Number of requests = 500 Number of requests = 1000

T —a
700 Q@3 oo Q3
600 5
500 00
w0 00
00 00
200 00
100 oo

o 0

)

02 03 04 os 06 o7 06 o8 10 12
time (secs) time (secs)

Fig. 4: Distribution of Response Time to Generate Access
Authorization Approaches for Scenario-I on graphs with 1,000
nodes

UAs, and UAj3 in the previous scenario is the same here. In
addition, the object attribute access enabling policy elements
sets are:

i) OA; ={oaloa € anc(head((ua;, arsg, oar))), oa
¢ des(oay), 0a # 0ay}
il) OAs ={oal (oa € des(oay) Aoa ¢ OA1,.)V oa
= O0ay)
iii) OAs = {oa | (oa € anc(head((ua;, arsgy, oar))),
oa € des(oay), oa € 0OAs,_)V oa = head((ua,,
arsg, oar)) }

C. Algorithm And Authorization Approaches

An input to the main function mainPReview is the
authorization state of a graph G, and access request triple
(i.e., the source user, the access right source user is requesting,
and the rarget policy element). The expected output of this
algorithm is a list of sets of possible approaches to grant the
source user’s access. The mainPReview function uses the

Number of requests = 1 Number of requests = 5

—a
— @ boo
)

0.004 0.006 0.008 0.010 0012 0.010 0.015

Number of requests = 1000

Number of requests = 500

—a —a
— @

@ Q@

08 10 12 14 16 18 20 22 150 175 200 225 250 275 300 325 350
time (secs) time (secs)

Fig. 5: Distribution of Response Time to Generate Access
Authorization Approaches for Scenario-II on graphs with
1,000 nodes

access request triple to determine the applicable scenario and
queries for the access enabling association(s).

The functions scenario-IPEGenerator and
scenario-IIPEGenerator take the access enabling
association(s) as input parameters to return the sets of
privileged user and access enabling policy elements for
the respective scenarios. The privileged users’ access rights
are utilized to create the authorization approaches. All
administrative access rights for creating assignments enable a
common operation, createAssign. The createAssign
takes an ordered pair of nodes that an edge originates and
terminates as input. Similarly, access rights for creating
associations enable the operation createAssoc. A triple
as input to the createAssoc is the predecessor-node, the
label, and successor-node of an edge.

Another pair of functions, sc-IAuthGen, and
sc—-ITIAuthGen use the power set of access right set
granted to the privileged user to request the creation of
relations among the access enabling policy elements for
scenario-I and scenario-II respectively.

TABLE I: Proportion of node types for 100 random graphs
with 1,000 nodes

Node types Scenario-I | Scenario-I11
Users 400 200
Objects - 200
User attributes 600 300
Object attributes - 300
Policy class 1 1

VI. IMPLEMENTATION

In this section, we discuss the implementation details of our
algorithm utilizing the networkx (python library for studying
graphs and networks). An Ubuntu virtual machine with two
cores and 10Gb of memory was used as our experimental
platform. We tested the response time to return all the ap-
proaches that authorize request(s) by simulating 100 random

graphs for the two scenarios. For each of the random graphs,
we simulated 200 variations for each request sizes of 1, 5,
500, and 1000. The 100 random access control graphs have
1000 (user, user attribute, object, and object attribute) nodes.

The proportion of nodes of each type per access control
graph is shown in the table I. We restricted the maximum
number of edges from a user or object to the policy class node
to 5. We did this by grouping user and object attributes into
four levels (labeled 1 to 4) while the policy class is labeled
level 0. Edges (assignment relations) were only allowed from
user and object attributes at higher levels to user and object
attributes at lower levels. That is, no assignment relations
between attributes at the same level.

In the random authorization graphs generated for scenario-
I, association relation predecessor nodes are reachable from
a privileged user. Also, the successor nodes of the associa-
tion relations are reachable from farget policy element (user
attribute) and source user. For each request in the scenario-II
random authorization graphs, there are at least two association
relations. One of the association relations has its successor
node reachable from target policy element (object or object
attribute), while the other enables a privileged user to delegate
access right to source user.

Figure 4 and 5 are the distribution of response time to
generate all possible approaches to grant a request in the
two scenarios. The figures are annotated with the quartile
response time, (Qi, Q2, and Q3) as shown in the figures’
legend. In scenario-I, the response time for 75% of access
request sizes of 1, 5, 500, and 1000 is below 0.53 x 103, 2.25
x 1073, 0.25, and 0.46 seconds, respectively. For scenario-II,
the response time for 75% of access request sizes of 1, 5,
500, and 1000 is below 2.6 x 103, 11 x 103, 0.97, and 1.93
seconds, respectively. The distribution of all the plots for the
response time is right-skewed. Few instances that the response
time takes a longer time, the cardinality of all the sets of access
enabling policy elements are non-empty. For cases that the
response time takes a short time, some of the policy element
sets are empty. Again, the NIST policy machine specification,
and no related effort answer this policy query of our work, no
comparative experiment for us to perform.

VII. CONCLUSION AND FUTURE WORK

The policy machine attribute-based access control model
uses enumeration of attributes and relations to formulate pol-
icy. This feature makes performing (queries) reviews of policy
feasible, rather than the NP-complete time complexity in mod-
els that express policy logically. However, the NIST reference
specification is lacking policy reviews pertinent to the creation
and modification of administrative access policy. An example
in section IV-B demonstrates how policy review using our
proposed algorithm can prevent an unintended consequence
in the PM administration. In section VI, the response time of
the performed experiments indicates the proposed algorithm
is scalable. Our future work shall expand the algorithm in this
paper to handle policy review of revocation and authorization
with constraint.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

D. Ferraiolo, S. Gavrila, and W. Jansen, “Policy Machine: features,
architecture, and specification,” National Institute of Standards and
Technology, Internal Report 7987

R. Basnet, S. Mukherjee, V. M. Pagadala and 1. Ray, “An efficient
implementation of next generation access control for the mobile health
cloud,” 2018 Third International Conference on Fog and Mobile Edge
Computing (FMEC), Barcelona, 2018, pp. 131-138.

Peter Mell, James M. Shook, and Serban Gavrila. 2016. Restricting
Insider Access Through Efficient Implementation of Multi-Policy Access
Control Systems. In Proceedings of the 8th ACM CCS International
Workshop on Managing Insider Security Threats (MIST ’16). ACM,
New York, NY, USA, 13-22.

Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. ABAC with Group
Attributes and Attribute Hierarchies Utilizing the Policy Machine. In
Proceedings of the 2nd ACM Workshop on Attribute-Based Access
Control (ABAC ’17). ACM, New York, NY, USA, 17-28. DOI:

D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4, no.
3, pp. 224-274, 2001.

David Ferraiolo, Serban Gavrila, and Gopi Katwala. 2018. A System
for Centralized ABAC Policy Administration and Local ABAC Policy
Decision and Enforcement in Host Systems using Access Control Lists.
In Proceedings of the Third ACM Workshop on Attribute-Based Access
Control (ABAC’18). ACM, New York, NY, USA, 35-42.
Bruhadeshwar Bezawada, Kyle Haefner, and Indrakshi Ray. 2018. Se-
curing Home IoT Environments with Attribute-Based Access Control.
In Proceedings of the Third ACM Workshop on Attribute-Based Access
Control (ABAC’18). ACM, New York, NY, USA, 43-53.

K. K. Kolluru, C. Paniagua, J. van Deventer, J. Eliasson, J. Delsing and
R. J. DeLong, “An AAA solution for securing industrial IoT devices
using next generation access control,” 2018 IEEE Industrial Cyber-
Physical Systems (ICPS), St. Petersburg, 2018, pp. 737-742.

Maribel Fernandez, Ian Mackie, and Bhavani Thuraisingham. 2019.
Specification and Analysis of ABAC Policies via the Category-based
Metamodel. In Proceedings of the Ninth ACM Conference on Data
and Application Security and Privacy (CODASPY ’19). Association for
Computing Machinery, New York, NY, USA, 173-184.

David Ferraiolo, Serban Gavrila, Gopi Katwala, and Joshua Roberts.
2017. Imposing Fine-grain Next Generation Access Control over
Database Queries. In Proceedings of the 2nd ACM Workshop on
Attribute-Based Access Control (ABAC °17). ACM, New York, NY,
USA, 9-15.

S. Bhatt, F. Patwa and R. Sandhu, “An Attribute-Based Access Control
Extension for OpenStack and Its Enforcement Utilizing the Policy
Machine,” 2016 IEEE 2nd International Conference on Collaboration
and Internet Computing (CIC), Pittsburgh, PA, 2016, pp. 37-45.
Pagadala V., Ray I (2019) Achieving Mobile-Health Privacy Using
Attribute-Based Access Control. In: Zincir-Heywood N., Bonfante G.,
Debbabi M., Garcia-Alfaro J. (eds) Foundations and Practice of Security.
FPS 2018. Lecture Notes in Computer Science, vol 11358. Springer,
Cham.

Vincent C. Hu, David Ferraiolo, Rick Kuhn, Arthur R. Friedman, Alan J.
Lang, Margaret M. Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert
Miller, and Karen Scarfone. 2013. Guide to attribute based access
control (ABAC) Definition and Considerations (Draft). NIST Special
Publication 800 (2013), 162.

Daniel Servos and Sylvia L. Osborn. 2017. Current Research and Open
Problems in Attribute-Based Access Control. ACM Comput. Surv. 49,
4, Article 65 (January 2017), 45 pages.

X. Jin, R. Krishnan, and R. S. Sandhu. A unified attribute-based access
control model covering DAC, MAC and RBAC. DBSec 2012: Data and
Applications Security and Privacy XXVI. Springer, Berlin, Heidelberg
D. Servos and S. L. Osborn. HGABAC: Towards a formal model of
hierarchical attribute-based access control. Foundations and Practice of
Security FPS 2014. Springer Cham

P. Biswas, R. Sandhu, and R. Krishnan. Label-based access control: An
ABAC model with enumerated authorization policy. Proc of the 2016
ACM International Workshop on Attribute Based Access Control. ACM
Press.

